当然对于活动运营来说数据这部分的工作没有那么玄乎,但本质是一样:如果通过数据的管理掌握负责业务的现实,如何通过数据分析从数据总挖掘有效信息。
简单一点来说,老板问你近上的这个活动效果如何,你能够从多个角度来阐述活动效果到底是好是坏,且数据的支撑让你的结论无可辩驳;而这些数据的支撑来自于你严谨的数据分析和挖掘过程。
数据这部分内容希望能够给大家一个引子,以明白:
活动运营需要具备有效的基本的数据管理能力,以掌握负责业务的似现实。
需要掌握一些基本的数据分析工具,进行有效的数据分析和挖掘。
我们将必要的活动运营需要掌握的数据管理和分析能力设定为这个部分知识的边界,数据管理和分析这门学科同样也是深远和无止尽的,直至现在也还不断有新的数据分析理论和方法被创造出来,如果对这个部分感兴趣的可以自行再深入研究。
基础数据管理能力
数据管理工作的本质是帮助我们尽量的了解现实,了解你的产品、策划案、专题活动是否真实有效影响了用户,呈现出的现实结果是由什么现实过程带来的,所做的运营动作的效果相比其可能的选择是更好还是更坏,投入的成本是否值回票价。
通过数据管理了解现实的过程是挑战直观认知的过程,是不是一个领导个人喜欢夸赞不绝的项目就是一个成功的项目,是不是一个表面毫无产出的项目就是毫无价值的项目,是不是你认为好的内容更多的用户也是一致的想法。
可怕的是,就个人实际接触来看,数据管理往往并不被当作掌握现实的工具在使用,而被当作掩盖问题创造虚假现实的手段去欺骗上级、合作方、客户和市场。
常见的方式就是先写下乐观的,有助于达到目标的结论(这个项目非常受到市场的欢迎,可以加大资源投放),反向再去挖掘数据,把有助于支撑这个结论的实际并没有那么严谨的数字留下来(我们投放的产品广告用户点击率非常高-其实只是因为广告商有一个抽奖iPhone的利益点),隐藏掉那些真实的会得出悲观结论的数字(被抽奖骗进来的用户根本对产品不感兴趣),渐渐倾向于相信一些错误的片面的数据,往往自己也被催眠了。
这种事情你肯定也没少干。但也理解,阶段性的在竞争状态下下,面对着市场、客户和上级、是需要夸大和包装一些虚假的结论来让一个项目活下去,争取更多的时间窗和资源。
这个过程其实并不影响你自己心里掌握真正的现实情况,心里有数你也才能评估用数据管理营造的假象所争取的资源,能不能弥补之前的错误带来二次的机会。
在开始这部分的内容之前,请准备好你的心态:这部分的数据管理并不会教你怎么把数据包装和呈现得美观和看似合理,这类的方法论市面很多课程了自己去学习,我想分享和倡导的数据管理,更多在于怎么通过数据管理帮助你掌握真正的现实。
什么是数据管理下真正的掌握现实?
我认为至少需要包含三个部分:
需要对现实有完整的客观描述(把模糊的现实转化为量化的结论-卖了很多产品-卖了1000份产品)
需要对现实的描述有评价标准和结论(比昨天多卖了一倍卖的很好)
需要对现实的原因同样有必要的溯源和量化的描述,形成完整的逻辑描述(因为气温骤降,促使很多观望用户下单,带来转化率有很大的提升)
以上三个部分构成了基本的数据管理框架,代表着你对一个完整现实情况的掌握。也意味着,你能够经得住领导的经典三大灵魂拷问:做的好不好?有多好?好在哪里?(嗯,其实我在一个领导力的系列课程里面也在不断的教问这三个问题,希望你们能完美接上。)
深究原因上领导会喜欢问这三个问题,也代表了这三个问题背后隐含的,代表完整现实的意义。
做什么、怎么做、怎么提升?
那么我们来分拆看看,三个部分应该分别做些什么,怎么做和怎么提升这个部分的能力
描述现实意味着,掌握完整和客观的现实全貌,透过表象看到本质。
很多时候结果被当作唯一的现实来对待,其实是片面甚至是误导性的。结果和现实是完全两个东西,结果只是直观的表象的现实的一部分(但不否认某些非黑即白的问题下结果就是唯一的现实),仅知道结果往往难以让你得出结论和指导的动作,掌握现实,你的结论和后续动作就会非常清晰。
举个简单的例子:这一次的专题活动销售情况不理想只是结果,而用户其实非常喜欢我们的产品,但因为某种原因导致这次专题活动并没有促使用户下单才是现实(实际的现实会更完整一些,便于理解做了简化,杠精退散)。
搭建一个业务的数据管理框架本质就是:搭建出来你需要掌握的和你的业务相关所有体现现实的数据框架并加以逻辑拆解和解读,以得出有效的结论。而完整性是搭建框架一步的目标,这个步骤拥有完整性才具备进行数据管理步骤的基础。
(1)先问自己一个问题,影响这个业务的所有相关的现实因素是哪些?
既然是问题,进入了我们已经掌握的问题分析的领域,参考问题分析文章的方法论,这个问题属于一个相对混沌的问题,我现在还不知道分析出来的结果可能是什么,拆机的元素需要有哪些,我们用无脑的6W2H方法帮助我们进行穷举(具体参考skyhahalife前文):
WHO:穷举所有描述用户现实的数据项,用户基本画像,用户量级等
WHERE:穷举所有描述场景现实的数据项,漏斗模型,资源投放效果等
WHAT:穷举所有描述产品现实的数据项,转化率,产品销售数据等
*知识点*:
“以上三个分析框架是电商里面常用的‘人货场’框架,是6W2H的一种演变种类也常用于策略制定,但因为电商在互联网里面的特别的复杂性,这个框架往往也能够套用于各种对C的业务分析中。”
穷举还在继续,只要认为是帮助认清完整现实的数据,都应该纳入框架,继续用其他‘W’和‘H’帮助你拆解,直到穷举完毕所有和这个项目相关的数据为止。
这个部分的能力提升,本质就是在一次又一次的数据拆解和解读过程中,不断的积累自己的业务熟悉程度,知道针对不同的业务场景,哪些数字是需要关注的重要的隐含的,在这个能力一定程度的积累之后你就可以跳过以上的拆解过程,在脑子里面就可以把这个框架搭出来。
在熟练的操作之前或者接触某个新的业务场景时候,还是建议完整套用以上过程,帮助你开启前几次的掌握完整现实的过程。
你现在手上有了一堆杂乱无章的数据,他们已经是现实的完整阐述,你还是看不懂,得不出有效的结论,因为他们还只是无序的数字,需要的逻辑拆解和解读,也就是我们要进行的后面两步动作。
(2)衡量好坏
晚饭一个人吃了五十块钱的麻辣烫,这个数字在你这里有什么感知,并没有吧。但如果我告诉你,一个三十块钱的麻辣烫套餐在同一个店铺里被叫做‘情侣套餐’,显然你就会得出‘你是猪吗’的结论。
这个步骤要做的事情也就是,给你目前手上这一堆杂乱的数字做个评价。
以上理论解释了困惑众多直男们的一个史诗问题:纪念日送多贵的礼物女朋友她才能满意?大部分场景下的答案是比她闺蜜收到的贵就好。
这个部分要给每个数字下一个定论,关键点就是要对每个数字寻找合理有效的参考标准:
一个广告的点击率,点击成本行业内一般是多少,之前类似的业务做到了多少,我上一次项目做到了多少;
一个用户的ASP值是多少,某一个群体在某一个场景下的平均值一般是多少;
一个产品的销售转化是多少,竞品一般是多少,之前的峰值日均值分别是多少。
这个部分的能力提升显而易见,即是你经常接触的数据纬度,你是否熟记他们的参考和衡量标准。当然在熟练掌握这个模块能力之前,强迫自己在完整的数据框架下,全面的梳理和了解一次所有数据的衡量标准,你基本上也就上路了。
现在你手上有了一堆杂乱无章的带着评价的数字,可以得出一些显而易见的结论,我的页面转化率很糟糕,你还是没有办法完整的描述出来整个现实情况,因为这些数字之间还没有构成逻辑关系,也就是下一步我们要做的。
(3)构建逻辑形成完整的现实描述
很多数据分析工作在上一步就停止了,因为似乎结论都很清楚了(点击率就是高用户就是喜欢,卖得好就是产品受欢迎,页面停留长就是用户愿意逛),也因为对于把数据管理当作对上预期管理工具的人来说,这个阶段其实可以得出是很多有效支持期望中结果的片面结论,某种主观还是客观因素让他们停了下来,开始拿这些零散的结论组织自己的项目喜报。
但仔细深究会发现,这些单点数字结论总是可以被质疑和挑战的,实际情况很多时候你被领导挑战得无法答复也是这个原因。因为数据没有形成逻辑,就没有形成完整的现实描述,结论一定不完整、可挑战。
完整有效的数据管理框架,是严谨的对现实的逻辑描述,严谨和逻辑是其中的必要因素。因为数据很容易骗人,原因正如上面所述,单点的数据没有逻辑的推倒下,可以得出很多种结果,而人们往往会倾向于相信积极的结论而忽略了其他更多中可能性,误导就发生了。
构建完整和严谨的逻辑性是有效的克服这个点的办法,方法其实并不复杂:
假设结论:你先纵览手上所有的数字,脑海中大概描绘一下数字之间的作用关系,应该可以有一些大概的猜测,把这些猜测先记录下来。保证你的猜测是一句完整的逻辑描述(*知识点基本的两种逻辑描述推演和归纳:因为--因为-;因为1、2、3、4X)。例:这次营销活动的销售效果较差是因为引入了错误的客户导致的转化率低。
验证:把你手上的数字放到你的逻辑描述当中,验证这个逻辑是否成立。例:转化率是不是低,客户的画像是不是不符合。
反证:为了避免在一开始猜测的过程中搭建的逻辑描述本身不完善,你需要尝试反证你的结论,从手中带着评价的数字中寻找是否有能够让这个逻辑不成立的结论,如果出现了,那么就重新假设,或者针对本身这个数字和逻辑的冲突进行一个新的假设-验证-反证。例:广告的点击率很高,似乎驳斥了引入错误客户的结论-新的假设:广告点击率高是因为广告上放置了无关的诱导信息(免费抽iPhone),验证类似的诱导信息在其他先例中是不是也产生过同样的结论。
不断的尝试组合手上的数字,经历以上过程,形成一个或者多个严谨的逻辑描述,直到没有更多重要的或者需要的描述可以梳理。就意味着你真正掌握了关于一个项目的全部现实,这才是有效的数据管理工作的本质,也是制定后续策略优化动作的基本保证。能够客观的面对成败,得出有效的结论,是一个业务和一个团队真正需要的。
这个时候,你就可以自信地说出,关于这个项目的情况,领导你随便问吧。
写就更简单了,无非是把这些逻辑依次通过一些可视化的工具呈现的简单清晰而已。怎么可视化市面上太多教材了,我这里不教搬迁的知识,自己去找。
当然以上的三个部分完整执行下来是异常复杂和耗时的,所有项目都严格执行显然不现实。更重要的是理解数据管理的真实运作原理,在面对复杂的数据管理工作时候,这套理论给到一个引子和方法让你不出错的开展一个数据管理工作。